How do you divide #(x ^ { 2} - 10x + 9) \div ( x + 5)#?

2 Answers
Mar 31, 2017

#x-15+84/(x+5)#

Explanation:

One way is to use the divisor as a factor in the numerator.

Consider the numerator.

#color(red)(x)(x+5)-5x-10x+9#

#=color(red)(x)(x+5)color(red)(-15)(x+5)+75+9#

#=color(red)(x)(x+5)color(red)(-15)(x+5)+84#

#rArr(x^2-10x+9)/(x+5)=color(red)(x-15)+84/(x+5)#

#"That is quotient "=x-15" and remainder "=84#

Mar 31, 2017

#x-15+84/(x+5)#

Explanation:

#" "x^2-10x+9#
#color(magenta)(x)(x+5)->ul(x^2+5x) larr" Subtract"#
#" "0-15x+color(white)(.)9#
#color(magenta)(-15)(x+5)->ul(-15x-75) larr" Subtract"#
#" "0color(magenta)(+84 larr" Remainder" )#

#(x^2-10x+9)-:(x+5)" "=" "color(magenta)(x-15+84/(x+5))#