How do you estimate the quantity using the Linear Approximation and find the error using a calculator #(15.8)^(1/4)#?

1 Answer
Mar 2, 2017

The linear approximation (about #x=16#) is:

# (15.8)^(1/4) ~~ 1.975 #

This is within #1%# of the actual value.

Explanation:

Linear Approximation
The linear approximation formula for #f(x)# about #x=a# is;

# f(x) ~~ f(a) + f'(a)(x-a) #

Let #f(x) = x^(1/4) => f'(x)=1/4x^(-1/4) #

And so the Linear approximation for #f(x)# is:

# f(x) ~~ f(a) + (x-a)/(4a^(1/4)) #

If we choose #a=16# (close to #15.8#); then

# f(x) ~~ 16^(1/4) + (x-16)/(4*16^(1/4)) #
# \ \ \ \ \ \ \ = 2 + (x-16)/(4*2) #
# \ \ \ \ \ \ \ = 2 + (x-16)/8 #

So a linear approximation of #15.8# is given by;

# f(15.8) ~~ 2 + (15.8-16)/8 #
# \ \ \ \ \ \ \ \ \ \ \ = 2 - 0.2/8 #
# \ \ \ \ \ \ \ \ \ \ \ = 2 - 0.025 #
# \ \ \ \ \ \ \ \ \ \ \ = 1.975 #

Calculator Result
Using a calculator we find:

# f(15.8) = 1.99372048 ... #

Error Analysis
The %age error is calculated using:

# %"age error" = |("estimate-actual")/"actual "* 100| #
# " " = | (1.975-1.99372048 ...)/(1.99372048 ... ) * 100| #
# " " = 0.9389725 ... #

So our linear approximation estimate was within #1%# of the actual value.