# How do you evaluate 2^ { 2} \times 3( 10^ { 2} + 3- 1) ?

Dec 3, 2017

1224

#### Explanation:

From BEDMAS, we start by dealing with the numbers in the bracket

${2}^{2} \cdot 3 \left({10}^{2} + 3 - 1\right)$

${2}^{2} \cdot 3 \left(100 + 3 - 1\right)$

${2}^{2} \cdot 3 \left(102\right)$

${2}^{2} \cdot 306$

Now let's deal with the exponents so we can multiply the numbers together

$4 \cdot 306$

$= 1224$

Dec 3, 2017

$1224$

#### Explanation:

This is all one term, but there are several operations and they have to be done in the correct order. However, we can do more than one operation at a time.

Before you can calculate an answer for the bracket, there is a power to be simplified inside the bracket.

$\text{ } \textcolor{b l u e}{{2}^{2}} \times 3 \left(\textcolor{b l u e}{{10}^{2}} + 3 - 1\right)$
$\text{ } \downarrow \textcolor{w h i t e}{\times x} \downarrow$
$= \textcolor{b l u e}{4} \times 3 \left(\textcolor{b l u e}{100} + 3 - 1\right)$

$= \textcolor{red}{4 \times 3} \left(\textcolor{f \mathmr{and} e s t g r e e n}{100 + 3 - 1}\right)$
$\text{ } \textcolor{red}{\downarrow} \textcolor{w h i t e}{\times \times x} \textcolor{f \mathmr{and} e s t g r e e n}{\downarrow}$
$= \text{color(red)(12)xx" } \left(\textcolor{f \mathmr{and} e s t g r e e n}{102}\right)$

$= 1224$

Dec 3, 2017

Expand squares
${2}^{2} \times 3 \left({10}^{2} + 3 - 1\right)$
$\downarrow \textcolor{w h i t e}{\mathrm{dd} \mathrm{dd}} \downarrow$
$4 \times 3 \left(100 + 3 - 1\right)$
$4 \times 3 \left(100 + 3 - 1\right)$
$\textcolor{w h i t e}{d} \downarrow \textcolor{w h i t e}{\mathrm{dd} \mathrm{di} i i} \downarrow$
$12 \textcolor{w h i t e}{D \mathrm{dd} \mathrm{di}} \left(103 - 1\right)$
Subrtract
$12 \left(102\right)$
$102$ can be written as $100 + 2$
$12 \left(100 + 2\right)$
Expand
$12 \times 100 + 12 \times 2$
Easy peasy lemon squeezy
$1200 + 24$
You get
$1224$