How do you evaluate #2^ { 4} \cdot 2^ { 6} \cdot ( 2^ { 3} ) ^ { 3}#?

1 Answer

#2^19#

Explanation:

Let's first look at #(2^3)^3#. We can use the rule:

#(x^a)^b=x^(ab)#

to get

#(2^3)^3=2^(3xx3)=2^9#

We now have:

#2^4xx2^6xx2^9#

We can use the rule:

#x^a xx x^b = x^(a+b)# to get

#2^4xx2^6xx2^9=2^(4+6+9)=2^19#