How do you solve #4( 3u + 9) > 9u + 15#?

1 Answer
Sep 4, 2017

#u\gt-7#

Explanation:

Simplify both sides, then solve for #u#

Distributive property on left end:
#4(3u+9)\gt9u+15#
#4(3u)+4(9)\gt9u+15#
#12u+36\gt9u+15#

Put any terms with #u# on the left side:
#12u\color(indianred)(-9u)+36\gt\cancel(9u)\cancel(\color(indianred)(-9u))+15#
#3u+36\gt15#
Take all other terms to the right side:
#3u\cancel(+36)\cancel(\color(steelblue)(-36))\gt15\color(steelblue)(-36)#
#3u\gt-21#

Simplify.
#(\cancel(3)u)/(\cancel(\color(seagreen)(3)))\gt-21/\color(seagreen)(3)#
#u\gt-7#

Source: Symbolab