How do you evaluate #400\div \frac{4}{5}#?

1 Answer
Nov 6, 2017

See a solution process below:

Explanation:

We can rewrite this expression as:

#400/1 -: 4/5 => (400/1)/(4/5)#

Now, we can use this rule for dividing fractions to evaluate the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(400)/color(blue)(1))/(color(green)(4)/color(purple)(5)) => (color(red)(400) xx color(purple)(5))/(color(blue)(1) xx color(green)(4)) => (cancel(color(red)(400))100 xx color(purple)(5))/(color(blue)(1) xx cancel(color(green)(4))) => 500/1 => 500#