How do you evaluate #(5a b ^ { 2} ) ( 6a ^ { 3} b ) #?

1 Answer
Dec 5, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(5 xx 6)(a xx a^3)(b^2 xx b) =>#

#30(a xx a^3)(b^2 xx b)#

Now, use these rules for exponents to simplify the #a# and #b# terms:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#30(a^color(red)(1) xx a^color(blue)(3))(b^color(red)(2) xx b^color(blue)(1)) =>#

#30a^(color(red)(1)+color(blue)(3))b^(color(red)(2)+color(blue)(1)) =>#

#30a^4b^3#