How do you evaluate #(5r^3)/(1/4)#?

1 Answer
Aug 9, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#((5r^3)/1)/(1/4)#

Now, use this rule for dividing fractions to evaluate the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(5r^3)/color(blue)(1))/(color(green)(1)/color(purple)(4)) => (color(red)(5r^3) xx color(purple)(4))/(color(blue)(1) xx color(green)(1)) => (20r^3)/1 => 20r^3#