How do you evaluate #( 5x^9-4x^2-2x+1)/(x^7-x^6+x-1)# as x approaches 1?
1 Answer
#lim_(x->1) (5x^9-4x^2-2x+1)/(x^7-x^6+x-1)=35/2#
Explanation:
#lim_(x->1) (5x^9-4x^2-2x+1)/(x^7-x^6+x-1)#
#=lim_(x->1) (color(red)(cancel(color(black)((x-1))))(5x^8+5x^7+5x^6+5x^5+5x^4+5x^3+5x^2+x-1))/(color(red)(cancel(color(black)((x-1))))(x^6+1))#
#=lim_(x->1) (5x^8+5x^7+5x^6+5x^5+5x^4+5x^3+5x^2+x-1)/(x^6+1)#
#=(5+5+5+5+5+5+5+1-1)/(1+1)#
#=35/2#
Alternative method
Alternatively you can use L'Hôpital's rule in the form:
If the following hold:
-
#f(x)# and#g(x)# are differentiable on an open interval containing#c# , except possibly at#c# . -
#lim_(x->c) f(x) = lim_(x->c) g(x) = 0# -
#lim_(x->c) (f'(x))/(g'(x))# exists
Then:
#lim_(x->c) f(x)/g(x) = lim_(x->c) (f'(x))/(g'(x))#
For our example, let:
#f(x) = 5x^9-4x^2-2x+1#
#g(x) = x^7-x^6+x-1#
#c = 1#
Then:
#f(x)# and#g(x)# are differentiable on an open interval containing#c=1# with:
#f'(x) = 45x^8-8x-2#
#g'(x) = 7x^6-6x^5+1#
-
#lim_(x->1) f(x) = lim_(x->1) g(x) = 0# -
#lim_(x->1) (f'(x))/(g'(x)) = (45-8-2)/(7-6+1) = 35/2# exists
So:
#lim_(x->1) f(x)/g(x) = lim_(x->1) (f'(x))/(g'(x)) = 35/2#