Let #\sin^{-1}(\sin(-8))=\theta\quad \quad \forall \ -\pi/2\le \theta\le\pi/2#
#\sin\theta=\sin(-8)#
#\theta=2n\pi+(-8)\ \ \text{Or}\ \ \theta=2n\pi+(\pi-(-8))#
#\theta=2n\pi-8\ \ \text{Or}\ \ \theta=(2n+1)\pi+8#
Where, #n# is any integer i.e. #n=0, \pm1, \pm2, \pm3, \ldots#
But, we know that #-\pi/2\le \theta\le\pi/2# , setting #n=-2# in second general solution we get
#\theta=(2\cdot (-2)+1)\pi+8#
#=-3\pi+8#
#=-81.633^\circ#