How do you evaluate #f( 15) # if #f(x)= x ^ { 3} - 6x + 4#?

1 Answer
Nov 13, 2017

See a solution process below:

Explanation:

To evaluate #f(15)# you need to substitute #color(red)(15)# for each occurrence of #color(red)(x)# in #f(x)#:

#f(color(red)(x)) = color(red)(x)^3 - 6color(red)(x) + 4# becomes:

#f(color(red)(15)) = color(red)(15)^3 - (6 xx color(red)(15)) + 4#

#f(color(red)(15)) = 3375 - 90 + 4#

#f(color(red)(15)) = 3285 + 4#

#f(color(red)(15)) = 3289#