How do you evaluate #\frac{32.4}{108}=\frac{x}{96}#?

1 Answer
Jun 27, 2017

See a solution process below:

Explanation:

Multiply each side of the equation by #color(red)(96)# to solve for #x# while keeping the equation balanced:

#color(red)(96) xx 32.4/108 = color(red)(96) xx x/96#

#color(red)(96) xx 32.4/108 = cancel(color(red)(96)) xx x/color(red)(cancel(color(black)(96)))#

#(96 xx 32.4)/108 = x#

#x = (96 xx 32.4)/108#

We can now factor the fraction to simplify it:

#x = (12 xx 8 xx 32.4)/(12 xx 9)#

#x = (color(red)(cancel(color(black)(12))) xx 8 xx 32.4)/(color(red)(cancel(color(black)(12))) xx 9)#

#x = (8 xx 32.4)/9#

#x = (8 xx 9 xx 3.6)/9#

#x = (8 xx color(red)(cancel(color(black)(9))) xx 3.6)/color(red)(cancel(color(black)(9)))#

#x = 28.8#