First, factor the numerator of the left fraction as:
#(2(2x - 6))/4 -: (2x - 6)/6#
Next, rewrite the expression as:
#((2(2x - 6))/4)/((2x - 6)/6)#
Now, use this rule for dividing fractions to complete the evaluation of the expression:
#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#
#(color(red)(2(2x - 6))/color(blue)(4))/(color(green)(2x - 6)/color(purple)(6)) =>#
#(color(red)(2(2x - 6)) xx color(purple)(6))/(color(blue)(4) xx color(green)((2x - 6))) =>#
#(color(red)(2(2x - 6)) xx color(purple)((2 xx 3)))/(color(blue)((2 xx 2) xx color(green)((2x - 6)))) =>#
#(color(red)(color(blue)(cancel(color(red)(2)))color(green)(cancel(color(red)((2x - 6))))) xx color(purple)((color(blue)(cancel(color(purple)(2))) xx 3)))/(color(blue)((color(red)(cancel(color(blue)(2))) xx color(purple)(cancel(color(blue)(2)))) xx color(green)(color(red)(cancel(color(green)((2x - 6))))))) =>#
#3#