How do you evaluate #\frac { 5} { 8} \times 1\frac { 3} { 9}#?

2 Answers
Nov 18, 2017

#5/6#

Explanation:

#• " change mixed numbers to improper fractions"#

#• color(blue)" cancel "" any "color(blue)"common factors"#

#• " repeat, if necessary until simplest form is reached"#

#1 3/9=(9xx1+3)/9=12/9#

#rArr5/8xxcancel(12)^4/cancel(9)^3#

#=5/8xx4/3#

#=5/cancel(8)^2xxcancel(4)^1/3#

#=(5xx1)/(2xx3)=5/6larrcolor(red)"in simplest form"#

#"a fraction is in "color(red)"simplest form"# when no other factor but 1 divides into the numerator/denominator.

Nov 18, 2017

#5/6#

Explanation:

#color(blue)("Preamble")#
Note that the value of 1 can be written as #9/9#

So #1 3/9" is the same as " 1+3/9 color(white)("dd")=color(white)("dd") 9/9+3/9color(white)("dd")=color(white)("dd")12/9#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Answering the question")#

Rewrite #5/8xx1 3/9color(white)("ddd")# as #color(white)("ddd")5/8xx12/9 #

But #12/9# is the same as #(12-:3)/(9-:3) = 4/3#

#color(white)("ddddddddddddddddddd")=5/8xx4/3#

#color(white)("ddddddddddddddddddd")= (5xxcancel(4)^1)/(cancel(8)^2xx3)color(white)("d")=color(white)("d")5/6#