How do you evaluate #\frac{7}{8}\div .25#?

3 Answers
Nov 14, 2017

See a solution process below:

Explanation:

First, we can rewrite: #0.25 = 25/100 = 1/4#

Next, we can rewrite the problem as:

#7/8 -: 1/4 => (7/8)/(1/4)#

Now, we can use this rule for dividing fractions to evaluate the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(7)/color(blue)(8))/(color(green)(1)/color(purple)(4)) = (color(red)(7) xx color(purple)(4))/(color(blue)(8) xx color(green)(1)) = (color(red)(7) xx cancel(color(purple)(4)))/(cancel(color(blue)(8))2 xx color(green)(1)) = 7/2#

Nov 14, 2017

#3 1/2# or#3.5#

Explanation:

#7/8-:0.25#

#:.=7/8-:1/4#

#:.=7/cancel8^2xxcancel4^1/1#

#:.=7/2#

#:.=3 1/2# or# 3.5#

Nov 14, 2017

#3 1/2# or#3.5#

Explanation:

#7/8-:0.25#

#:.=7/8-:1/4#

#:.=7/cancel8^2xxcancel4^1/1#

#:.=7/2#

#:.=3 1/2# or# 3.5#