First, rewrite the expression as:
#(8.6 xx 3.9)/(3.6 xx 4.3) xx (10^-3 xx 10^-6)/(10^-7 xx 10^-3) =>#
#(2 xx 4.3 xx 3 xx 1.3)/(3 xx 1.2 xx 4.3) xx (10^-3 xx 10^-6)/(10^-7 xx 10^-3) =>#
#(2 xx color(red)(cancel(color(black)(4.3))) xx color(blue)(cancel(color(black)(3))) xx 1.3)/(color(blue)(cancel(color(black)(3))) xx 1.2 xx color(red)(cancel(color(black)(4.3)))) xx (color(green)(cancel(color(black)(10^-3))) xx 10^-6)/(10^-7 xx color(green)(cancel(color(black)(10^-3)))) =>#
#(2 xx 1.3)/(1.2) xx 10^-6/10^-7 =>#
#(2 xx 1.3)/(2 xx 0.6) xx 10^-6/10^-7 =>#
#(color(red)(cancel(color(black)(2))) xx 1.3)/(color(red)(cancel(color(black)(2))) xx 0.6) xx 10^-6/10^-7 =>#
#2.1bar6 xx 10^-6/10^-7#
Now, use this rule of exponents to evaluate the 10s terms:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#2.1bar6 xx 10^color(red)(-6)/10^color(blue)(-7) =>#
#2.1bar6 xx 10^(color(red)(-6)-color(blue)(-7)) =>#
#2.1bar6 xx 10^(color(red)(-6)+color(blue)(7)) =>#
#2.1bar6 xx 10^1#
Or
#2.1bar6 xx 10#
Or
#21.bar6#