How do you evaluate #\frac{9}{2}\div -12#?

1 Answer
Nov 22, 2017

See a solution process below:

Explanation:

We can rewrite this expression as:

#9/2 -: -12 => 9/2 -: (-12)/1 => (9/2)/((-12)/1)#

We can now use this rule for dividing fractions to evaluate the rewritten expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(9)/color(blue)(2))/(color(green)(-12)/color(purple)(1)) =>#

#(color(red)(9) xx color(purple)(1))/(color(blue)(2) xx color(green)(-12)) =>#

#(color(red)(3 xx 3) xx color(purple)(1))/(color(blue)(2) xx color(green)(3 xx -4)) =>#

#(color(red)(color(black)(cancel(color(red)(3))) xx 3) xx color(purple)(1))/(color(blue)(2) xx color(green)(color(black)(cancel(color(green)(3))) xx -4)) =>#

#3/-8 =>#

#-3/8#