How do you evaluate #\frac { 9} { 5} \div \frac { 3} { 4}#?

2 Answers
Mar 4, 2018

See a solution process below:

Explanation:

We can rewrite this expression as:

#(9/5)/(3/4)#

We can then use this rule for dividing fractions to evaluate the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(9)/color(blue)(5))/(color(green)(3)/color(purple)(4)) = (color(red)(9) xx color(purple)(4))/(color(blue)(5) xx color(green)(3)) = (cancel(color(red)(9))color(red)(3) xx color(purple)(4))/(color(blue)(5) xx cancel(color(green)(3))) = 12/5#

Mar 4, 2018

#12/5 or 2 2/5#

Explanation:

To divide by a fraction, multiply by the reciprocal.

#9/5 color(red)(div 3/4)#

#= 9/5 color(red)(xx4/3)#

#=cancel9^3/5 xx4/cancel3" "larr# cancel common factors

#=12/5" "larr# multiply straight across