How do you evaluate #\frac { a ^ { 2} + 3a } { 4a ^ { 2} - 16} \div \frac { a ^ { 2} - 16} { a ^ { 2} - 6a + 8}#?

1 Answer
Nov 1, 2017

#(a^2+3a)/(4a^2+24a+32)#

Explanation:

#(a^2+3a)/(4a^2-16)#/#(a^2-16)/(a^2-6a+8)#

=#(a^2+3a)/(4a^2-16)*(a^2-6a+8)/(a^2-16)#

=#(a^2+3a)/[4*(a+2)(a-2)]#*#[(a-2)(a-4)]/[(a+4)(a-4)]#

=#(a^2+3a)/[4*(a+2)(a+4)]#

=#(a^2+3a)/(4a^2+24a+32)#