How do you evaluate #\frac { x - 3} { 2x - 10} - \frac { 9x + 57} { 10x + 50} = \frac { x - 7} { x ^ { 2} - 25}#?

1 Answer
Feb 13, 2017

Solutions are #x=-11"; "x=+8#

#x=5# is an excluded value

Explanation:

Page width causes equations to take up more than 1 line

I factored out the numerators. However, later on it turns out that factoring the numerator does not help. Left in place rather than change everything.

#" "(x-3)/(2(x-5))" " -" "(3(3x+19))/(10(x+5))" "=(x-7)/((x-5)(x+5))#

...................................................................................................
Building common denominators:

#color(green)([(x-3)/(2(x-5))color(red)(xx1)] -[(3(3x+19))/(10(x+5))color(red)(xx1)]=[(x-7)/((x-5)(x+5))color(red)(xx1)])#

..................................................................................................
#color(green)([(x-3)/(2(x-5))color(red)(xx(5(x+1))/(5(x+1)))] -[(3(3x+19))/(10(x+5))color(red)(xx(x-5)/(x-5))]=[(x-7)/((x-5)(x+5))color(red)(xx10/10)])#
.................................................................................................

#color(green)([(5(x+1)(x-3))/(10(x-5)(x+5))] -[(3(3x+19)(x-5))/(10(x-5)(x+5))]=[(10(x-7))/(10(x-5)(x+5))])#

Note that at #x=5# the denominator part #(x-5)=0#. Thus the wole denominator becomes 0. Consequently the equation is 'undefined' at #x=5#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Multiply both sides by #10(x-5)(x+5)# cancelling out the denominator.

#[5(x+1)(x-3)] - [3(3x+19)(x-5)] = 10(x-7)#

#[5x^2-14x-3]-[9x^2+12x-285]=10x-70#

#-4x^2 -2x +282=10x-70 #

#-4x^2-12x+352=0#

#-x^2-3x+88=0#

Notice that #11xx8=88" and "11-8=3#

The #x^2# is negative so end up with #-3x# we have:

#(x+11)(-x+8)=0#

Solutions are #x=-11"; "x=+8#