How do you evaluate \frac { x } { x ^ { 2} - 9} + \frac { 3} { x ( x - 3) } ?

1 Answer
Nov 20, 2017

x/(x^2-9) + 3/(x(x-3))=(x^2+3x+9)/(x(x-3)(x+3))

Explanation:

x/(x^2-9) + 3/(x(x-3))

Factorising the denominator of the first fraction:

=x/((x-3)(x+3)) + 3/(x(x-3))

Putting fractions together by creating a common denominator:

=(x(x)+3(x+3))/(x(x-3)(x+3))

Expanding the numerator:

=(x^2+3x+9)/(x(x-3)(x+3))