How do you evaluate #\frac { x } { x ^ { 2} - 9} + \frac { 3} { x ( x - 3) } #?

1 Answer
Nov 20, 2017

#x/(x^2-9) + 3/(x(x-3))=(x^2+3x+9)/(x(x-3)(x+3))#

Explanation:

#x/(x^2-9) + 3/(x(x-3))#

Factorising the denominator of the first fraction:

#=x/((x-3)(x+3)) + 3/(x(x-3))#

Putting fractions together by creating a common denominator:

#=(x(x)+3(x+3))/(x(x-3)(x+3))#

Expanding the numerator:

#=(x^2+3x+9)/(x(x-3)(x+3))#