How do you evaluate #int 1/750* (x+10)^4 *e^(-.07) # for [0,125]?

1 Answer
Sep 27, 2015

Remove any constants from the integrand, then integrate.

Explanation:

#int_0^125(1/750)(x+10)^4e^-0.07dx#

#=(1/750)(e^-0.07)int_0^125(x+10)^4dx#

Now, integrate the polynomial with respect to x:

#=(1/750)(e^-0.07)(x+10)^5/5#

Finally, evaluate at the upper and lower limits [0,125]

#=[(1/750)(e^-0.07)(125+10)^5/5]# - #[(1/750)(e^-0.07)(0+10)^5/5]#

#= 11,149,002

Hope that helped