How do you evaluate #int (1/(sinx)^2)# from -pi/4 to pi/4?

1 Answer
Jun 13, 2017

Because the integrand is not defined at #x=0#, this is an improper integral.

Explanation:

#1/(sinx)^2sinx = (1/sinx)^2 = csc^2x#

#int_(-pi/4)^(pi/4) csc^2x dx = lim_(brarr0^-)int_(-pi/4)^b csc^2x dx + lim_(ararr0^+)int_a^(pi/4) csc^2x dx #,
provided that

Thinking about the derivtaives of trigonometric functions, we should recall that #d/dx(cotx) = -csc^2x#.

So #int 1/(sinx)^2 dx = -cotx #

As #xrarr0#, #cotx rarr+- oo# so the integrals on the right do not converge, so the main integral does not converge.