How do you evaluate #int 1/(x-3)dx# from 1 to 4?

1 Answer
Mar 26, 2016

#-ln2#

Explanation:

If we let #u=x-3#, then #du=dx#.

This transforms the integral as follows:

#int_1^4 1/(x-3)dx=int_-2^1 1/udu#

The transformation of the bounds on the definite integral occurs since we switched variables (from #x# to #u#). To find the values they switch to, plug in #1# and #4# into #u=x-3#.

We see that #int1/udu=lnabsu+C#, so we can evaluate the integral:

#=[lnabsu]_-2^1=lnabs1-lnabs(-2)=0-ln2=-ln2#