How do you evaluate #\int _ { 5} ^ { 10} x \sin 10d x#?
1 Answer
Jun 28, 2017
We want to evaluate:
# int _5^10 \ x sin10 \ dx = 75/2sin10 #
Explanation:
We want to evaluate:
# I = int _5^10 \ x sin10 \ dx #
As
# I = sin10 \ int _5^10 \ x \ dx #
Then using the power rule for integral calculus we have:
# I = sin10 \ [ x^2/2 ]_5^10#
# \ \ = sin10 \ 1/2 \ [ x^2 ]_5^10#
# \ \ = (1/2sin10 )(100-25)#
# \ \ = (1/2sin10) (75)#
# \ \ = 75/2sin10#