How do you evaluate #int cot(x)# from 0 to 2pi?
2 Answers
The integral diverges.
Explanation:
Consider the function:
This improper integral does not converge.
Explanation:
To attempt to evaluate the integral, we need to find the two improper integrals
# = lim_(ararr0^+) ln(sinx) |_a^(pi/2)#
# = ln(sin(pi/2)) - lim_(ararr0^+) (ln(sina))#
# = ln(1) - lim_(ararr0^+) (ln(sina))#
# = - lim_(ararr0^+) (ln(sina))#
But this limit does not exist, so the integral diverges.
Because one of the integrals involved in