How do you evaluate #\int \frac { 1} { \csc x - 1} d x#?
1 Answer
Dec 2, 2017
Explanation:
Multiplying by
# = (cscx+1)/(csc^2 x -1)#
But we have the trigonometric identity that
#=(csc x +1) / (cot^2x) #
# = csc x /cot^2x + tan^2x#
# = sin x / cos^2x +(sec^2x - 1)#
# = secx tanx + sec^2x -1#
Now integrate
#= sec x + tanx -x +C#