How do you evaluate #\int \frac { 1} { x ^ { 3} + x ^ { 2} - 2x } d x#?
1 Answer
Explanation:
We want to find:
# I = int \ 1/(x^3+x^2-2x) \ dx #
We can factorise the denominator to get:
# 1/(x^3+x^2-2x) -= 1/(x(x^2+x-2)) #
# " " = 1/(x(x+2)(x-1)) #
And then we can expand the integrand into partial fractions:
# 1/(x(x+2)(x-1)) -= A/x+B/(x+2)+C/(x-1) #
# " " = (A(x+2)(x-1) +Bx(x-1)+Cx(x+2))/(x(x+2)(x-1))#
Leading to the identity:
# 1 -= A(x+2)(x-1) +Bx(x-1)+Cx(x+2) #
To find the coefficients
Put
#x= \ \ \ \ \ 0 => 1=A(2)(-1) \ \ \ \ => A=-1/2 #
Put#x=-2 => 1=B(-2)(-3) => B=1/6#
Put#x= \ \ \ \ \ 1 => 1=C(1)(3) \ \ \ \ \ \ \ \ \ => C=1/3 #
Hence the partial fraction decomposition of the integrand is:
# 1/(x^3+x^2-2x) -= (-1/2)/x+(1/6)/(x+2)+(1/3)/(x-1) #
So we can write the integral as:
# I = int \ (-1/2)/x+(1/6)/(x+2)+(1/3)/(x-1) \ dx #
Which we can just integrate to get:
# I = -1/2ln|x|+1/6ln|x+2|+1/3ln|x-1| + C#