How do you evaluate #\int \frac { ( x - 2) } { x ( x ^ { 2} - 4x + 5) ^ { 2} } d x#?
1 Answer
Explanation:
Let us denote the required integral by
# I = int \ (x-2)/(x(x^2-4x+5)^2) \ dx #
Partial Fraction Decomposition
We can decompose the integrand using partial fractions, the partial fraction decomposition will be of the form:
# (x-2)/(x(x^2-4x+5)^2) = A/x + (Bx+C)/(x^2-4x+5) + (Dx+E)/(x^2-4x+5)^2 #
# " " = {A(x^2-4x+5)^2 + (Bx+C)x(x^2-4x+5) + (Dx+E)x}/{x(x^2-4x+5)^2} #
Leading to:
# x-2 = A(x^2-4x+5)^2 + (Bx+C)x(x^2-4x+5) + (Dx+E)x #
# :. x-2 = A(x^4-8x^3+26x^2-40x+25) + (Bx+C)(x^3-4x^2+5x) + (Dx+E)x #
We can use various methods to find our unknown constants:
# "Put " x=0 => -2=A*5^2 #
# :. A = -2/25 #
Compare coefficients:
# "Coeff"(x^4) => 0 = A +B #
# :. B = 2/25 #
# "Coeff"(x^3) => 0 = -8A+C-4B#
# :. 0=16/25+C-8/25 => C=-8/25#
# "Coeff"(x^2) => 0 = 26A+5B-4C+D#
# :. 0=-52/25+10/25+32/25+D => D=10/25=2/5#
# "Coeff"(x^1) => 1 = -40A+5C+E#
# :. 1=80/25-40/25+E => E=-3/5#
Hence we can the integral as:
# I = int \ (-2/25)/x + (2/25x-8/25)/(x^2-4x+5) + (2/5x-3/5)/(x^2-4x+5)^2 \ dx#
# \ \ = -2/35 \ int \ 1/x dx + 2/25 int (x-4)/(x^2-4x+5) \ dx+ 1/5 int (2x-3)/(x^2-4x+5)^2 \ dx#
# \ \ = -2/25 \ I_1 + 2/25 \ I_2 + 1/5 \ I_3#
Where:
# I_1 = int \ 1/x dx + 2/25 \ dx#
# I_2 = int (x-4)/(x^2-4x+5) \ dx #
# I_3 = int (2x-3)/(x^2-4x+5)^2 \ dx#
Now let us take each of these three separate integrals in turn:
Integral 1:
The first integral,
# I_1 = int \ 1/x \ dx #
# \ \ \ = ln|x| #
Integral 2:
The second integral,
# I_2 = int \ (x-4)/(x^2-4x+5) \ dx #
# \ \ \ = int \ (x-4)/((x-2)^2-2^2+5) \ dx#
# \ \ \ = int \ (x-4)/((x-2)^2+1) \ dx#
Let
# I_2 = int \ (u-2)/(u^2+1) \ du#
# \ \ \ = int \ u/(u^2+1) - 2/(u^2+1)\ du#
# \ \ \ = 1/2int \ (2u)/(u^2+1) \ du - 2 int \ 1/(u^2+1)\ du#
# \ \ \ = 1/2ln|u^2+1| - 2 arctanu#
Restoring the substitution we get:
# I_2 = 1/2ln|x^2-4x+5| - 2 arctan(x-2)#
Integral 3:
The third integral,
# I_3 = int \ (2x-3)/(x^2-4x+5)^2 \ dx #
# \ \ \ = int (2x-3)/((x-2)^2+1)^2 \ dx #
Let
# I_3 = int (2u+1)/(u^2+1)^2 \ du #
# \ \ \ = int (2u)/(u^2+1)^2 \ du+ int 1/(u^2+1)^2 \ du #
Consider the integral:
# int (2u)/(u^2+1)^2 \ du #
Let
# int (2u)/(u^2+1)^2 \ du = int \ 1/w^2 \ dw #
# " " = -1/w #
Restoring the substitutions we get:
# int (2u)/(u^2+1)^2 \ du = -1/(u^2+1) #
# " " = -1/((x-2)^2+1) #
# " " = -1/(x^2-4x+5) #
And now we consider:
# int 1/(u^2+1)^2 \ du #
Let
# int 1/(u^2+1)^2 \ du = int \ 1/(tan^2theta+1)^2 \ sec^2 theta \ d theta #
# " " = int \ 1/(sec^2theta)^2 \ sec^2 theta \ d theta #
# " " = int \ 1/(sec^2theta) \ d theta #
# " " = int \ cos^2theta \ d theta #
# " " = int \ 1/2(1+cos2theta) \ d theta #
# " " = 1/2 \ int \ 1+cos2theta \ d theta #
# " " = 1/2 (theta + 1/2 sin2theta) #
# " " = 1/2 theta + 1/2 sintheta costheta#
Now,
# :. sinthetacostheta = cos^2theta * u #
# " " =1/sec^2theta * u #
# " " =1/(1+tan^2theta) * u #
# " " =u/(u^2+1) #
Restoring the substitutions we get:
# int 1/(u^2+1)^2 \ du = 1/2 arctanu+ 1/2 u/(u^2+1)#
# " " = 1/2 arctan(x-2) + 1/2 (x-2)/((x-2)^2+1)#
# " " = 1/2 arctan(x-2) + 1/2 (x-2)/(x^2-4x+5)#
Hence, we can write the third integral as:
# I_3 = int (2u)/(u^2+1)^2 \ du+ int 1/(u^2+1)^2 \ du #
# \ \ \ = -1/(x^2-4x+5)+ 1/2 arctan(x-2) + 1/2 (x-2)/(x^2-4x+5)#
Combine Results
Now we return back to our original partial fraction result from earlier, and replace the three integrals with the above results:
# I = -2/25 \ I_1 + 2/25 \ I_2 + 1/5 \ I_3#
# \ \ = -2/25 {ln|x|} + 2/25 {1/2ln|x^2-4x+5| - 2 arctan(x-2)} + 1/5 {-1/(x^2-4x+5)+ 1/2 arctan(x-2) + 1/2 (x-2)/(x^2-4x+5)} + c #
# \ \ = -2/25 ln|x| + 1/25 ln|x^2-4x+5| - 4/25 arctan(x-2) -1/5 1/(x^2-4x+5)+ 1/10 arctan(x-2) + 1/10 (x-2)/(x^2-4x+5) + c #
# \ \ = -2/25 ln|x| + 1/25 ln|x^2-4x+5| - 3/50 arctan(x-2) -1/5 1/(x^2-4x+5)+ 1/10 (x-2)/(x^2-4x+5) + c #
# \ \ = -2/25 ln|x| + 1/25 ln|x^2-4x+5| - 3/50 arctan(x-2) + (x-2-2)/(10(x^2-4x+5)) + c #
# \ \ = -2/25 ln|x| + 1/25 ln|x^2-4x+5| - 3/50 arctan(x-2) + (x-4)/(10(x^2-4x+5)) + c #