How do you evaluate #int(x)/(x^2+1)^(3/2) dx#?

1 Answer
Apr 14, 2016

#-1/sqrt(x^2+1)+C#

Explanation:

Through substitution, we can evaluate the indefinite integral. First, let

#u=x^2+1" "=>" "(du)/dx=2x" "=>" "du=2xdx#

Additionally, write #1/(x^2+1)^(3/2)# as #(x^2+1)^(-3/2)#.

This gives us the integral:

#intx(x^2+1)^(-3/2)dx=int(x^2+1)^(-3/2)*xdx#

Note that if we multiply the interior of the integral by #2#, we will have #2xdx#, our value for #du#. To do this, counterbalance it by multiply the exterior of the integral by #1/2#.

#=1/2int(x^2+1)^(-3/2)*2xdx#

Substituting in our values for #u# and #du#, this becomes:

#=1/2intu^(-3/2)color(white).du#

Now, evaluate the integral using the rule

#intu^ndu=u^(n+1)/(n+1)+C#

Giving the function:

#=1/2(u^(-3/2+1)/(-3/2+1))+C=1/2(u^(-1/2)/(-1/2))+C#

#=1/2(-2)u^(-1/2)+C=-1/sqrtu+C#

Substituting in #u=x^2+1#, this yields

#=-1/sqrt(x^2+1)+C#