How do you evaluate #int(x)/(x^2+1)^(3/2) dx#?
1 Answer
Explanation:
Through substitution, we can evaluate the indefinite integral. First, let
#u=x^2+1" "=>" "(du)/dx=2x" "=>" "du=2xdx#
Additionally, write
This gives us the integral:
#intx(x^2+1)^(-3/2)dx=int(x^2+1)^(-3/2)*xdx#
Note that if we multiply the interior of the integral by
#=1/2int(x^2+1)^(-3/2)*2xdx#
Substituting in our values for
#=1/2intu^(-3/2)color(white).du#
Now, evaluate the integral using the rule
#intu^ndu=u^(n+1)/(n+1)+C#
Giving the function:
#=1/2(u^(-3/2+1)/(-3/2+1))+C=1/2(u^(-1/2)/(-1/2))+C#
#=1/2(-2)u^(-1/2)+C=-1/sqrtu+C#
Substituting in
#=-1/sqrt(x^2+1)+C#