How do you evaluate #int y = x(e^(-x))# from 0 to 2?
1 Answer
Feb 22, 2017
Explanation:
I believe you're asking for the integral:
#int_0^2xe^-xdx#
To do this, first find the antiderivative without the bounds. Do this through integration by parts, which takes the form
For
#{(u=x,=>,du=dx),(dv=e^-xdx,=>,v=-e^-x):}#
Note that going from
Through the IBP formula, we see that:
#intxe^-xdx=uv-intvdu=-xe^-x+inte^-xdx#
Which is an integral we previously found:
#intxe^-xdx=-xe^-x-e^-x=-e^-x(x+1)#
Then, with bounds:
#int_0^2xe^-xdx=[-e^-x(x+1)]_0^2#
#=-e^-2(2+1)-(-e^-0(0+1))#
#=-3e^-2+1#
#=(e^2-3)/e^2#