How do you evaluate #k^ { 2} + 8k + 11= 7#?

1 Answer
Sep 3, 2017

See a solution process below:

Explanation:

First, subtract #color(red)(7)# from each side of the equation to put the polynomial in standard form while keeping the equation balanced:

#k^2 + 8k + 11 - color(red)(7) = 7 - color(red)(7)#

#k^2 + 8k + 4 = 0#

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(1)# for #color(red)(a)#

#color(blue)(8)# for #color(blue)(b)#

#color(green)(4)# for #color(green)(c)# gives:

#x = (-color(blue)(8) +- sqrt(color(blue)(8)^2 - (4 * color(red)(1) * color(green)(4))))/(2 * color(red)(1))#

#x = (-8 +- sqrt(64 - 16))/2#

#x = (-8 - sqrt(48))/2# and #x = (-8 + sqrt(48))/2#

#x = (-8 - sqrt(16 * 3))/2# and #x = (-8 + sqrt(16 * 3))/2#

#x = (-8 - sqrt(16)sqrt(3))/2# and #x = (-8 + sqrt(16)sqrt(3))/2#

#x = (-8 - 4sqrt(3))/2# and #x = (-8 + 4sqrt(3))/2#

#x = -8/2 - (4sqrt(3))/2# and #x = -8/2 + (4sqrt(3))/2#

#x = -4 - 2sqrt(3)# and #x = -4 + 2sqrt(3)#