How do you evaluate #lim (1+3x)^(4/x)# as x approaches 0?

1 Answer
May 22, 2018

#lim_(x->0) (1+3x)^(4/x) = e^12#

Explanation:

Note that:

#lim_(t->0) (1+t)^(1/t) = lim_(n->oo) (1+1/n)^n = e#

Using #t = 3x#, we have:

#lim_(x->0) (1+3x)^(4/x) = lim_(t->0) ((1+t)^(1/t))^12#

#color(white)(lim_(x->0) (1+3x)^(4/x)) = (lim_(t->0) (1+t)^(1/t))^12#

#color(white)(lim_(x->0) (1+3x)^(4/x)) = e^12#