How do you evaluate #lim (1+3x)^(4/x)# as x approaches 0?
1 Answer
May 22, 2018
Explanation:
Note that:
#lim_(t->0) (1+t)^(1/t) = lim_(n->oo) (1+1/n)^n = e#
Using
#lim_(x->0) (1+3x)^(4/x) = lim_(t->0) ((1+t)^(1/t))^12#
#color(white)(lim_(x->0) (1+3x)^(4/x)) = (lim_(t->0) (1+t)^(1/t))^12#
#color(white)(lim_(x->0) (1+3x)^(4/x)) = e^12#