How do you evaluate #lim x->1# of #(2x-1)/(sqrt(x-1)+1)#?
1 Answer
Sep 21, 2016
Explanation:
#lim_(xrarr1)(2x-1)/(sqrt(x-1)+1)#
Notice that we can plug
#=(2(1)-1)/(sqrt(1-1)+1)#
#=(2-1)/(sqrt(0)+1)#
#=1/1#
#=1#