How do you evaluate #lim x->1# of #(2x-1)/(sqrt(x-1)+1)#?

1 Answer
Sep 21, 2016

#1#

Explanation:

#lim_(xrarr1)(2x-1)/(sqrt(x-1)+1)#

Notice that we can plug #1# in for #x# straight away without causing any issues: this function is defined at #x=1#.

#=(2(1)-1)/(sqrt(1-1)+1)#

#=(2-1)/(sqrt(0)+1)#

#=1/1#

#=1#