How do you evaluate log_5 92log592?

2 Answers
Apr 21, 2016

approx2.812.81

Explanation:

There is a property in logarithms which is log_a(b)=logb/logaloga(b)=logbloga The proof for this is at the bottom of the answer Using this rule:
log_5(92)=log92/log5log5(92)=log92log5
Which if you type into a calculator you'll get approximately 2.81.

Proof:
Let log_ab=xlogab=x;
b=a^xb=ax
logb=loga^xlogb=logax
logb=xlogalogb=xloga
x=logb/logax=logbloga
Therefore log_ab=logb/logalogab=logbloga

Apr 21, 2016

x=ln(92)/ln(5) ~~2.810x=ln(92)ln(5)2.810 to 3 decimal places

Explanation:

As an example consider log_10(3) =xlog10(3)=x

This mat be written as:" "10^x=3 10x=3
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:" "log_5(92) log5(92)

Let log_5(92)=xlog5(92)=x

The we have: 5^x=925x=92

You can use log base 10 or natural loges (ln). This will work for either.

Take logs of both sides

ln(5^x)=ln(92)ln(5x)=ln(92)

Write this as: xln(5)=ln(92)xln(5)=ln(92)

Divide both sides by ln(5)ln(5) giving:

x=ln(92)/ln(5) ~~2.810x=ln(92)ln(5)2.810 to 3 decimal places