How do you evaluate #\root[ 3] { 16} + 4\root [ 3] { 27} + \sqrt { 81}#?

1 Answer
Dec 14, 2017

#21+2root(3)2#

Explanation:

1) The first term #root(3)16# is the only problem because 16 is not a perfect cube.

So factor it to get a cube root out of it.

2) Then factor all the other terms as cubes or squares

#color(white)(....)root(3)16color(white)(..)+color(white)(.)4root(3)27  color(white)(.)+color(white)(.)sqrt81#

#root(3)((2)^3*2)  +  4root(3)(3^3)  +  sqrt((9)^2)#

3) Find the cube roots or the square root and write them outside
#2root(3)(2) + 4*3 + 9#

4) Evaluate the expression
#4*3 + 9 +2root(3)(2) #
#color(white)(.)12  + 9 + 2root(3)(2)#
#color(white)(......)21    + 2root(3)(2)#

Answer:
#21 + 2root(3)(2)#