How do you evaluate #\sin ( 15^ { \circ } ) - \sin ( - 15^ { \circ } )#?

1 Answer
Oct 25, 2017

#sin(15^@)-sin(-15^@) = 1/2(sqrt(6)-sqrt(2))#

Explanation:

Use:

#sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha#

#sin(45^@) = cos(45^@) = sqrt(2)/2#

#sin(30^@) = 1/2#

#cos(30^@) = sqrt(3)/2#

#sin(-theta) = -sin(theta)#

So:

#sin(15^@) = sin(45^@ - 30^@)#

#color(white)(sin(15^@)) = sin(45^@)cos(30^@) - sin(30^@) cos(45^@)#

#color(white)(sin(15^@)) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2#

#color(white)(sin(15^@)) = 1/4(sqrt(6)-sqrt(2))#

Then:

#sin(15^@)-sin(-15^@) = 2sin(15^@) = 1/2(sqrt(6)-sqrt(2))#