How do you evaluate #(\sqrt 3 +3) ( \sqrt 3 -1)#?

1 Answer
Oct 18, 2017

#2sqrt3#

Explanation:

Apply the F.O.I.L method:

F: Multiply the first terms in each parenthesis
O Multiply the two most outer terms
I: Multiply the two most inner terms
L: Multiply the last terms in each parenthesis

F: #(color(red)sqrt3+3)(color(red)sqrt3-1)=sqrt9=3#

O: #(color(red)sqrt3+3)(sqrt3color(red)(-1))=-sqrt3#

I: #(sqrt3+color(red)(3))(color(red)sqrt3-1)=3sqrt3#

L: #(sqrt3+color(red)3)(sqrt3color(red)(-1))=-3#

Combining everything from above we get the expression:

#3-sqrt3+3sqrt3-3#

We can simplify this and arrive to our final solution:

#cancel3+2sqrt3cancel(-3#

#2sqrt3larr# Final Answer