How do you evaluate #\sqrt{75^{2}-56^{2}}#?

1 Answer
Aug 17, 2017

#sqrt(75^2-56^2) = sqrt(2489) ~~ 49.89#

Explanation:

The difference of squares identity tells us:

#a^2-b^2 = (a-b)(a+b)#

So:

#sqrt(75^2-56^2) = sqrt((75-56)(75+56))#

#color(white)(sqrt(75^2-56^2)) = sqrt(19*131)#

#color(white)(sqrt(75^2-56^2)) = sqrt(2489)#

Both #19# and #131# are prime numbers, so this square root is in simplest form.

Since #2489# is close to #2500 = 50^2#, we can fairly quickly get good rational approximations to the irrational number #sqrt(2489)# using the Babylonian method, or by using generalised continued fractions.

For example:

#sqrt(a^2+b) = a+b/(2a+b/(2a+b/(2a+b/(2a+...))))#

So putting #a=50# and #b=2489-a^2 = -11# we get:

#sqrt(2489) = 50-11/(100-11/(100-11/(100-11/(100-...))))#

So:

#sqrt(2489) ~~ 50-11/100 = 50-0.11 = 49.89#