How do you evaluate #\sqrt{75^{2}-56^{2}}#?
1 Answer
Aug 17, 2017
Explanation:
The difference of squares identity tells us:
#a^2-b^2 = (a-b)(a+b)#
So:
#sqrt(75^2-56^2) = sqrt((75-56)(75+56))#
#color(white)(sqrt(75^2-56^2)) = sqrt(19*131)#
#color(white)(sqrt(75^2-56^2)) = sqrt(2489)#
Both
Since
For example:
#sqrt(a^2+b) = a+b/(2a+b/(2a+b/(2a+b/(2a+...))))#
So putting
#sqrt(2489) = 50-11/(100-11/(100-11/(100-11/(100-...))))#
So:
#sqrt(2489) ~~ 50-11/100 = 50-0.11 = 49.89#