How do you evaluate #tan 27°#?
1 Answer
Explanation:
I like this question because it highlights the fact that you can find algebraic expressions for trigonometric functions for any multiple of
Some typical values that you are probably familiar with are:
#sin 45^@ = cos 45^@ = sqrt(2)/2#
#sin 30^@ = cos 60^@ = 1/2#
#sin 60^@ = cos 30^@ = sqrt(3)/2#
Some that you may be less familiar with are:
#sin 18^@ = cos 72^@ = 1/4(sqrt(5)-1)#
#sin 72^@ = cos 18^@ = 1/4 sqrt(10+2sqrt(5))#
We can find trigonometric values for other angles by using half angle formulas or formulas for sine and cosine of sums and differences.
In our particular example, we have:
#sin 27^@ = sin (45^@ - 18^@)#
#color(white)(sin 27^@) = sin 45^@ cos 18^@ - sin 18^@ cos 45^@#
#color(white)(sin 27^@) = sqrt(2)/2 1/4 sqrt(10+2sqrt(5)) - 1/4(sqrt(5)-1) sqrt(2)/2#
#color(white)(sin 27^@) = sqrt(2)/8 (sqrt(10+2sqrt(5)) - sqrt(5)+1)#
#cos 27^@ = cos (45^@ - 18^@)#
#color(white)(cos 27^@) = cos 45^@ cos 18^@ + sin 45^@ sin 18^@#
#color(white)(cos 27^@) = sqrt(2)/2 1/4 sqrt(10+2sqrt(5)) + sqrt(2)/2 1/4 (sqrt(5)-1)#
#color(white)(cos 27^@) = sqrt(2)/8 (sqrt(10+2sqrt(5)) + sqrt(5)-1)#
So:
#tan 27^@ = sin 27^@/cos 27^@#
#color(white)(tan 27^@) = (sqrt(2)/8 (sqrt(10+2sqrt(5)) - sqrt(5)+1))/(sqrt(2)/8 (sqrt(10+2sqrt(5)) + sqrt(5)-1))#
#color(white)(tan 27^@) = (sqrt(10+2sqrt(5)) - sqrt(5)+1)/(sqrt(10+2sqrt(5)) + sqrt(5)-1)#
#color(white)(tan 27^@) = ((sqrt(10+2sqrt(5)) - sqrt(5)+1)^2)/((sqrt(10+2sqrt(5)) + sqrt(5)-1)(sqrt(10+2sqrt(5)) - sqrt(5)+1))#
#color(white)(tan 27^@) = ((10+2sqrt(5))-2(sqrt(5)-1)sqrt(10+2sqrt(5)) + (sqrt(5)-1)^2)/((10+2sqrt(5)) - (sqrt(5)-1)^2)#
#color(white)(tan 27^@) = ((10+2sqrt(5))-2(sqrt(5)-1)sqrt(10+2sqrt(5)) + (6-2sqrt(5)))/((10+2sqrt(5)) - (6-2sqrt(5)))#
#color(white)(tan 27^@) = (16-2(sqrt(5)-1)sqrt(10+2sqrt(5)))/(4(sqrt(5)+1))#
#color(white)(tan 27^@) = ((16-2(sqrt(5)-1)sqrt(10+2sqrt(5)))(sqrt(5)-1))/(4(sqrt(5)+1)(sqrt(5)-1))#
#color(white)(tan 27^@) = 1/16(16-2(sqrt(5)-1)sqrt(10+2sqrt(5)))(sqrt(5)-1)#
#color(white)(tan 27^@) = sqrt(5)-1 - sqrt(5 - 2 sqrt(5))#
I have skipped a few steps at the last hurdle, due to the length of the answer, but the last two expressions are equivalent.