Note :
#color(blue)((A)tan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))#
#color(brown)((B)tan^-1(-x)=-tan^-1x#
We know that,
#(1)sin^-1x=tan^-1(x/sqrt(1-x^2))=>#
#sin^-1(4/5)=tan^-1((4/5)/sqrt(1-16/25))=tan^-1((4/5)/(3/5))#
#color(red)(sin^-1(4/5)=tan^-1(4/3)#
#(2)cos^-1x=tan^-1(sqrt(1-x^2)/x)=>#
#cos^-1(5/13)=tan^-1(sqrt(1-
25/169)/(5/13))=tan^-1((12/13)/(5/13))#
#color(red)(cos^-1(5/13)=tan^-1(12/5)#
Now, from #(1) and (2)# ,above
#sin^-1(4/5)-cos^-1(5/13)=color(blue)(tan^-1(4/3)-tan^-1(12/5)#
#color(white)(sin^-1(4/5)-cos^-1(5/13))=color(blue)(tan^-1((4/3-
12/5)/(1+4/3*12/5))touse(A)#
#color(white)(sin^-1(4/5)-cos^-1(5/13))=tan^-1((20-
36)/(15+48))#
#color(white)(sin^-1(4/5)-cos^-1(5/13))=tan^-1(-16/63)#
#sin^-1(4/5)-cos^-1(5/13)=color(brown)(-tan^-1(16/63)toApply(B)#
So,
#tan(sin^-1(4/5)-cos^-1(5/13))=tan(-tan^-1(16/63))#
#tan(sin^-1(4/5)-cos^-1(5/13))=-tan(tan^-1(16/63)#
#tan(sin^-1(4/5)-cos^-1(5/13))=-16/63#