How do you evaluate the definite integral by the limit definition given #int x^2+1dx# from [1,2]?

1 Answer
Jan 13, 2017

Please see the explanation section below.

Explanation:

Here is a limit definition of the definite integral.

.#int_a^b f(x) dx = lim_(nrarroo) sum_(i=1)^n f(x_i)Deltax#.

Where, for each positive integer #n#, we let #Deltax = (b-a)/n#

And for #i=1,2,3, . . . ,n#, we let #x_i = a+iDeltax#. (These #x_i# are the right endpoints of the subintervals.)

I prefer to do this type of problem one small step at a time.

#int_1^2 (x^2+1) dx#.

Find #Delta x#

For each #n#, we get

#Deltax = (b-a)/n = (2-1)/n = 1/n#

Find #x_i#

And #x_i = a+iDeltax = 1+i1/n = 1+i/n#

Find #f(x_i)#

#f(x_i) = x_icolor(white)()^2 =(1+i/n)^2+1#

# = 2+(2i)/n+i^2/n^2#

Find and simplify #sum_(i=1)^n f(x_i)Deltax # in order to evaluate the sums.

#sum_(i=1)^n f(x_i)Deltat = sum_(i=1)^n ( 2+(2i)/n+i^2/n^2) 1/n#

# = sum_(i=1)^n( 2/n+(2i)/n^2+i^2/n^3)#

# = 2/nsum_(i=1)^n (1) +2/n^2sum_(i=1)^n (i)+1/n^3 sum_(i=1)^n (i^2)#

Evaluate the sums

# = 2/n(n)+2/n^2((n(n+1))/2) + 1/n ((n(n+1)(2n+1))/6)#

(We used a summation formula for the sums in the previous step.)

Rewrite before finding the limit

#sum_(i=1)^n f(x_i)Deltax = 2/n(n)+2/n^2((n(n+1))/2) + 1/n ((n(n+1)(2n+1))/6)#

# = 2+ ((n(n+1))/n^2) + 1/6 ((n(n+1)(2n+1))/n^3) #

Now we need to evaluate the limit as #nrarroo#.

#lim_(nrarroo) ((n(n+1))/n^2) = lim_(nrarroo) (n/n*(n+1)/n) = 1#

and #lim_(nrarroo) ((n(n+1)(2n+1))/n^3) = lim_(nrarroo) (n/n*(n+1)/n (2n+1)/n) = 2#

To finish the calculation, we have

#int_0^4 (x^2+1) dx = lim_(nrarroo) ( 2+ ((n(n+1))/n^2) + 1/6 ((n(n+1)(2n+1))/n^3))#

# = 2+(1)+1/6(2) = 10/3#