How do you evaluate the definite integral #int (14x^6)dx# from [-2,2]?
1 Answer
Dec 17, 2016
Explanation:
using the
#color(blue)"power rule for integration"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(intax^ndx=a/(n+1)x^(n+1))color(white)(2/2)|)))#
#rArrint_-2^2(14x^6)dx=14/7[x^7]_-2^2#
#=2[x^7]_-2^2# Evaluate the upper and lower limits and subtract upper - lower
#=2[(2^7)-(-2)^7)]=2(128-(-128))=512#