in terms of the indefinite integral, use the Power Rule for integration:
#int x^n \ dx = (x^(n+1))/(n+1) + C#
And, with constant #alpha#:
#int alpha x^n \ dx = (alpha \ x^(n+1))/(n+1) + C#
Or, if you like, lift the constant outside the integration:
#int alpha x^n \ dx = alpha int x^n \ dx#
#=alpha ( \ x^(n+1))/(n+1) + C = (alpha \ x^(n+1))/(n+1) + C#
I'm labouring this, deliberately.
So
#int 2 x \ dx#
# = 2 int x^color(red)(1) \ dx#
from the Power Rule
# =2 ( x^(1+1))/(1+1) + C#
# =x^2 + C qquad triangle#
Finally, if in doubt, differentiate your result in #triangle#, because differentiation and integration are like inverse processes
# d/dx (x^2 + C) = d/dx (x^2) + d/dx(C) = 2x + 0 = 2x# Voila!!
Now for the definite integral
#int_2^3 2 x \ dx#
#= 2 int_2^3 x \ dx#
from the Power Rule
#= 2 [ x^2/2 ]_2^3#
#= [ x^2 ]_2^3#
#= 9 - 4 = 5#