How do you evaluate the definite integral #int 4secthetatantheta # from #[-pi/3, pi/3]#?

1 Answer
Nov 14, 2016

#int _(-pi/3)^(pi/3)4secthetatanthetad(theta) = 0#

Explanation:

#" "#
As we know that the derivative of #" "color(red)(d(sectheta)=secthetatantheta(d theta))" "#

Therefore,
#" "#
#int_(-pi/3)^(pi/3)4secthetatantheta d(theta)#
#" "#
#=4int_(-pi/3)^(pi/3)color(red)((dsectheta)#
#" "#
#" "#
#=4sectheta|_(-pi/3)^(pi/3)#
#" "#
#=4sec(pi/3)-4sec(-pi/3)#
#" "#
#=4sec(pi/3)-4sec(pi/3)" "# because #" "color(blue)(sec(-alpha)=secalpha)#
#" "#
#=0#
#' "#
#" "#
Hence,
#" "#

#int _(-pi/3)^(pi/3)4secthetatanthetad(theta) = 0#