How do you evaluate the definite integral #int abs(x^2-4x+3)dx# from [0,4]?

1 Answer
Nov 27, 2016

#int_0^4 |x^2-4x+3| dx = 4#

Explanation:

graph{|x^2-4x+3| [-2, 5, -1, 5]}

We need to perform the integration in several steps because of the modulus sign

We want to evaluate #I=int_0^4 |x^2-4x+3| dx#

Note By symmetry about x=2 we just need to evaluate
#I=2int_0^2 |x^2-4x+3| dx#, and observe that

#|x^2-4x+3| = { (x^2-4x+3,0<=x<=1), (-(x^2-4x+3),1<=x<=2) :}#

Hence,
#1/2I=int_0^2 |x^2-4x+3| dx#
# :. 1/2I=int_0^1 |x^2-4x+3| dx + int_1^2 |x^2-4x+3| dx#
# :. 1/2I=int_0^1 (x^2-4x+3) dx + int_1^2 -(x^2-4x+3) dx#

# :. 1/2I= [1/3x^3-2x^2+3x]_0^1 -[1/3x^3-2x^2+3x]_1^2#

# :. 1/2I= (1/3-2+3) -{(8/3-8+6)-(1/3-2+3)}#
# :. 1/2I= 4/3 -{2/3-4/3}#
# :. 1/2I= 4/3 -(-2/3)#
# :. 1/2I= 4/3 +2/3#
# :. 1/2I= 2#
# :. I= 4#