How do you evaluate the definite integral #int dx / ( x(sqrt(ln(x)))# from #[e, e^81]#?

2 Answers
Jul 23, 2016

#int_e^(e^81)dx/(xsqrtln(x))=16#

Explanation:

We want to find:

#int_e^(e^81)dx/(xsqrtln(x))#

We will want to use substitution. Note that if we let #u=ln(x)#, then #(du)/dx=1/x# and #du=dx/x#, which is currently present in the integral.

Before making these substitutions, note that making the substitutions will necessitate that the boundaries change. To change them, plug the current bounds into #u=ln(x)#.

We see that #e# becomes #u(e)=ln(e)=1# and #e^81# becomes #u(e^81)=ln(e^81)=81#.

Thus, since #color(red)(u=ln(x))# and #color(blue)(du=dx/x)#:

#int_e^(e^81)color(blue)dx/(color(blue)xsqrtcolor(red)ln(x))=int_1^81(du)/sqrtu#

Rewrite the integral:

#int_1^81(du)/sqrtu=int_1^81u^(-1/2)du#

Which can be integrated using the rule:

#int_a^bu^ndu=[u^(n+1)/(n+1)]_a^b" "" ",n!=-1#

So:

#int_1^81u^(-1/2)du=[u^(-1/2+1)/(-1/2+1)]_1^81=[2sqrtu]_1^81=2sqrt81-2sqrt1=16#

Jul 23, 2016

16

Explanation:

just as an alternative approach,

for #int_e^(e^81)dx/(xsqrtln(x))#

if you recognise the pattern

#d/dx (sqrtln(x) )#

#= 1/2 1/ sqrt (ln( x)) * 1/x#

then the integral is

#int_e^(e^81) d/dx (2 sqrtln(x)) \ dx#

#=2 [ sqrtln(x) ]_e^(e^81)#

#2( [ sqrt(81)] - [ sqrt(1) ] ) = 16#