How do you evaluate the definite integral #int(e^x+x+1)dx# from #[1,2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Narad T. Jan 21, 2017 The answer is #=e^2-e+5/2# Explanation: We need #inte^xdx=e^x+C# #intx^ndx=^(n+1)/(n+1)+C(x!=-1)# Therefore, #int_1^2(e^x+x+1)dx# #=[e^x+x^2/2+x]_1^2# #=(e^2+2+2)-(e+1/2+1)# #=e^2-e+4-3/2# #=e^2-e+5/2# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1081 views around the world You can reuse this answer Creative Commons License