How do you evaluate the definite integral #int s^3-3s^2+2# from #[-2,2]#?

1 Answer
Jan 14, 2017

#-8#

Explanation:

Integrate each term using the #color(blue)"power rule for integration"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(int(ax^n)=a/(n+1)x^(n+1))color(white)(2/2)|)))#

#rArrint_(-2)^2(s^3-3s^2+2)ds#

#=[1/4s^4-s^3+2s]_(-2)^2#

Evaluate for s = 2 and subtract the evaluation for s = - 2

#=(4-8+4)-(4+8-4)=0-8=-8#