How do you evaluate the definite integral #int sin2theta# from #[0,pi/6]#?

1 Answer
Oct 12, 2016

#int_0^(pi/6)sin2theta=1/4#

Explanation:

#int_0^(pi/6)sin(2theta)d theta#

let
#color(red)(u=2theta)#
#color(red)(du=2d theta)#
#color(red)(d theta=(du)/2)#
The boundaries are changed to #color(blue)([0,pi/3])#

#int_0^(pi/6)sin2thetad theta#
#=int_color(blue)0^color(blue)(pi/3)sincolor(red)(u(du)/2)#
#=1/2int_0^(pi/3)sinudu#
As we know the#intsinx=-cosx#

#=-1/2(cos(pi/3)-cos0)#
#=-1/2(1/2-1)=-1/2*-1/2=1/4#

therefore,#int_0^(pi/6)sin2theta=1/4#